Polynomial SLO Review

1. Solve for the ?

$$
\left(3 x^{3}+2 x^{2}-x\right)-(?)=x^{3}-x^{2}-3 x+1
$$

$$
\begin{aligned}
& \text { Remember: } \begin{array}{l}
5-x=7+x \\
+x=-7+x \\
5-7+7=-2 \\
3 x^{3}+2 x^{2}-x \\
-1 x^{3}+1 x^{2}+3 x-1 \\
2 x^{3}+3 x^{2}+2 x-1
\end{array}
\end{aligned}
$$

Simplify
3. $\left(7 x^{3}-2 x^{4}\right) \Theta\left(8 x^{3}-6 x^{4}+\underline{5 x}\right) \oplus\left(6-3 x^{2}-5 x^{4}\right)$
$-2 x^{4}+7 x^{3}-3 x^{2}-5 x+6$
$+6 x^{4}-8 x^{3}$
$-5 x^{4}$
$-x^{4}-x^{3}-3 x^{2}-5 x+6$

$$
\text { 5. } \begin{aligned}
& \left(6 k^{2}+2 k-3\right)(-4 k+3) \\
& -24 k^{3}+18 k^{2} \\
& -8 k^{2}+6 k \\
& +12 k-9
\end{aligned}
$$

Remember that $\mathrm{f}(\mathrm{x})^{*} \mathrm{~g}(\mathrm{x})$ is the same as previous problems

$\frac{B W}{\frac{1}{4}} \cdot \frac{1}{2}=\frac{1}{8}$

