Review:

Find the slope of ($-1 / 2,2 / 3$) and $(-2 / 5,3 / 4)$

I Can: Use Point Slope Form
Find the Equation of a Line given certain information 2.5
point slope form

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

m = slope
slope-intercept form

$$
\left(x_{1}, y_{1}\right)
$$

$$
\begin{aligned}
& y=m x+b \\
& m=\text { slope } \\
& b=(0, b) y \text {-int. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Graph }\left(\begin{array}{l}
y \pm 4)=-1 / 2(x-3) \\
-y_{1} \\
y \Theta y_{1}=m\left(x \Theta x_{1}\right)
\end{array}\right. \\
& \text { point }(3,-4) \\
& m=-\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& y-4=2 / 3(x+2) \\
& \text { point }(-2,4) \\
& m=\frac{2}{3}
\end{aligned}
$$

Find Point Slope Equation Given $m=3$ $(-7,8)$
x, y_{1}
$y-y_{1}=m\left(x-x_{1}\right)$
$y-8=3(x+7)$

$$
\begin{gathered}
(-2,5) \quad m=-3 / 4 \\
y-5=-\frac{3}{4}(x+2)
\end{gathered}
$$

Find a line Parallel to $\frac{8 y}{\phi}=\frac{7 x-24}{8}$
with a y intercept of $(0,6)$

$$
\begin{aligned}
& y=\frac{7}{8} x-3 \\
& m_{1}=\frac{7}{8}
\end{aligned}
$$

$$
\begin{aligned}
& m_{2}=\frac{7}{8} \\
& b=6
\end{aligned}
$$

$$
y=\frac{7}{8} x+6
$$

Find a line Perpendicular to $2 x+y=5$ thru the point $(1,-3)$

$$
\begin{aligned}
&-2 x \\
&=-2 x+5 \\
&=-2 \\
&=1
\end{aligned}
$$

$$
-2 x \text { - } 2 x
$$

$$
y=-2 x+5
$$

$$
m_{2}=\frac{1}{2}
$$

$$
m_{1}=-2
$$

$$
\begin{aligned}
& y=m x+b \\
& -3=\frac{1}{2} \cdot 1+b \\
& -3=\frac{1}{8}+b \\
& -\frac{1}{2}-\frac{1}{2} \\
& b=-\frac{7}{2}
\end{aligned}
$$

$$
\begin{array}{r}
B \cdot W \\
\frac{W}{2} \cdot 2-\frac{1}{2} \\
\frac{-b-1}{2} \\
b=-\frac{7}{2}
\end{array}
$$

$$
y=\frac{1}{2} x-\frac{7}{2}
$$

Find the equation of the line given $\begin{aligned} & (2,3) \text { and } \\ & \left(3,7 y_{1}\right) \\ & \times 2 y 2\end{aligned}$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad m=\frac{7-3}{3-2}=\frac{4}{1}
$$

$$
y=m x+b
$$

$$
\begin{aligned}
& \text { Find the Equation of the line } \\
& \text { given the points }(2,-5) \text { and } \\
& (0,1) \\
& x_{1} y_{1} \\
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& y=m x+b \\
& y=\frac{1-5}{0-2}=\frac{6}{-2}-\frac{-3}{} \\
& y=-3 x+1
\end{aligned}
$$

