Starter:

$$
\begin{aligned}
& \frac{1 .\left(3 x^{2}+4 x-2\right) \oplus\left(2 x^{2}-3 x^{3}+7\right)}{-3 x^{3}+5 x^{2}+4 x+5} \\
& \frac{2 \cdot\left(x^{2}+2\right)\left(x^{2}-3 x+5\right)}{\left.x^{4}-3 x^{3}+5 x^{2}\right)-6 x+10} \begin{array}{l}
\left.2 x^{2}\right)(x-7) \\
x^{4}-3 x^{3}+7 x^{2}-6 x+10
\end{array}
\end{aligned}
$$

Square Root: $f(x)=\sqrt{x}$
Cube Root: $f(x)=\sqrt[3]{x}$
Piece-wise: $f(x)=x+2$ if $x<-2$

$$
\begin{gathered}
1 \quad \text { if }-2 \leq x \leq 0 \\
-2 x+5 \text { if } x>0
\end{gathered}
$$

Step: $f(x)=\operatorname{int} x$

Remember: $(x-2)(x+5)$
Undo it..... $\frac{x^{2}+5 x-2 x-10}{\frac{2 x-3 x-10}{2}}$

13. $20 x^{3}+34 x^{2}+14 x$ $2 x\left(10 x^{2}+17 x+7\right)$

